
pyhma Documentation
Release 0.0.1

Sabry Moustafa

Oct 08, 2020

Contents

1 Theory 3
1.1 Absolute free energy . 3
1.2 Free energy derivatives . 3
1.3 Mapping velocity . 5

2 Application to Crystals 7
2.1 Anharmonic energy . 8
2.2 Anharmonic pressure . 8
2.3 Equivalence of Conv and HMA . 8

3 pyHMA 11
3.1 Installation . 11
3.2 Usage . 12
3.3 Modules . 17

4 Indices and tables 19

i

ii

pyhma Documentation, Release 0.0.1

This project is a Python implementation of the Mapped-Averaging method
for precise estimation of ensemble averages using molecular simulation.

Contents 1

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00018

pyhma Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Theory

1.1 Absolute free energy

The classical Helmholtz configurational free energy 𝐴 of a system at temperature 𝑇 and volume 𝑉 is related to its
configurational partition function 𝑄 via:

𝐴 = −𝑘B𝑇 ln𝑄 where 𝑄 =

∫︁
𝑉

𝑒−𝛽𝑈(x)dx

with x representing coordinates of all atoms. For simplicity, from now on we will be using unitless energy 𝒰 ≡ 𝛽𝑈
and free energy 𝒜 ≡ 𝛽𝐴 (and their derivatives; e.g., force), where 𝛽 = 1/𝑘B𝑇 .

1.2 Free energy derivatives

Derivative of free energy w.r.t external perturbation or distortion (e.g., temperature or volume) is related to material
properties. For example, average energy 𝑈 and pressure 𝑃 are given by

𝑈 = 𝜕𝛽𝒜 and 𝑃 = −𝑘B𝑇 𝜕𝑉 𝒜

(using 𝜕𝜈 to represent the derivative operator ≡ 𝜕
𝜕𝜈). To get general expression of free energy derivative, we will use

the vector 𝜆 to represent all perturbations of interest; e.g., 𝜆 = (𝛽, 𝑉). The unitless free energy 𝒜 at some 𝜆 is then
given by

𝒜 (𝜆) = − ln𝑄 (𝜆)

and its first and second derivatives are given by

𝜕𝜈𝒜 = −𝜕𝜈𝑄

𝑄
and 𝜕𝜇𝜈𝒜 = −𝜕𝜇𝜈𝑄

𝑄
+

𝜕𝜈𝑄

𝑄

𝜕𝜇𝑄

𝑄

To get 𝑄 (𝜆) derivatives, we need to recognize that, in general, the integration boundary Ω is a function of 𝜆,

𝑄 (𝜆) =

∫︁
Ω(𝜆)

𝑒−𝒰(y,𝜆)dy

3

pyhma Documentation, Release 0.0.1

where y represents the new coordinates that span the general phase space Ω (𝜆), at some general 𝜆. However, we can
use the change of variables technique to carry out the integration over some 𝜆-independent phase-space boundary (we
will use Ω(𝜆) = 𝑉) and use the Jacobian determinant 𝐽 to transform from the x configurations (which span 𝑉) to the
mapped coordinates y(x, 𝜆), using dy = 𝐽dx

𝑄 (𝜆) =

∫︁
𝑉

𝑒−𝒰(y(x,𝜆),𝜆)𝐽dx

now, 𝑄 can be written as a function of the “normal” (current) coordinates x

𝑄 (𝜆) =

∫︁
𝑉

𝑒−𝒰 ′
dx

where we define a modified potential 𝒰 ′ ≡ 𝒰 − ln 𝐽 , which accounts for the mapping. Now, the 𝑄 derivatives can be
easily evaluated

𝜕𝜈𝑄 =

−
∫︁
𝑉

𝑒−𝒰 ′
D𝜈𝒰 ′ dx

𝜕𝜇𝜈𝑄 =∫︁
𝑉

𝑒−𝒰 ′
[(D𝜈𝒰 ′) (D𝜇𝒰 ′) − D𝜇𝜈𝒰 ′] dx

where we used the D𝜈 operator on some function 𝑓(y(x, 𝜆), 𝜆) to represent the total (Lagrangian or material) deriva-
tive (i.e., D𝜈𝑓 = 𝜕𝜈𝑓 + (𝜕𝜈y) · ∇𝑓). Accordingly, the derivatives of 𝒜 are simply given by

𝜕𝜈𝒜 = ⟨D𝜈𝒰 ′⟩ and 𝜕𝜇𝜈𝒜 = ⟨D𝜇𝜈𝒰 ′⟩ − Cov (D𝜈𝒰 ′ , D𝜇𝒰 ′)

where Cov (𝑋,𝑌) ≡ ⟨𝑋𝑌 ⟩ − ⟨𝑋⟩ ⟨𝑌 ⟩ is the covariance between the stochastic variables 𝑋 and 𝑌 . We are left with
evaluating derivatives of 𝒰 ′, which are related to 𝑈 derivatives via D𝜈𝒰 ′ = D𝜈𝒰−D𝜈𝐽 and D𝜇𝜈𝒰 ′ = D𝜇𝜈𝒰−D𝜇𝜈𝐽 .

1. Evaluation of energy derivatives

First, 𝒰 derivatives can be directly evaluated using the relation between the total (Lagrangian) and partial (Eulerian)
derivatives:

D𝜈𝒰 = 𝜕𝜈𝒰 − ℱ · ẋ𝜈

where ℱ ≡ −∇𝒰 = −𝛽∇𝑈 is the force vector on all atoms and ẋ𝜈 ≡ 𝜕𝜈y represents the mapping “velocity” of the
external perturbation 𝜈. Applying this operator twice, we get the second derivative

D𝜇𝜈𝒰 = 𝜕𝜇𝜈𝒰 − (ẍ𝜇𝜈 + ẋ𝜇 · ∇ẋ𝜈) · ℱ + ẋ𝜈 · Φ · ẋ𝜇 − (ẋ𝜈 · 𝜕𝜇ℱ + ẋ𝜇 · 𝜕𝜈ℱ)

where Φ ≡ ∇∇𝒰 = 𝛽∇∇𝒰 is the force constant matrix and ẍ𝜇𝜈 ≡ 𝜕𝜇ẋ
𝜈 is the 𝜇𝜈 “acceleration”, or the rate of

change of ẋ𝜈 w.r.t. 𝜇 (note that ẍ𝜇𝜈 ̸= ẍ𝜈𝜇).

2. Evaluation of Jacobian derivatives

Now, in order to get D𝜈𝐽 , we need to do two steps. First, perform differentiation of the phase space volume, using
(again) the change of variables technique

𝜕𝜈Ω(𝜆) = 𝜕𝜈

∫︁
Ω(𝜆)

1 dy = 𝜕𝜈

∫︁
𝑉

D𝜈𝐽 dx

4 Chapter 1. Theory

pyhma Documentation, Release 0.0.1

Second,use the Reynolds transport theorem along with the divergence theorem in our multidimensional space

𝜕𝜈

∫︁
Ω(𝜆)

𝑓 (y, 𝜆) dy =

∫︁
Ω(𝜆)

[𝜕𝜈𝑓 + ∇ · (ẋ𝜈𝑓)] dy

Applying this theorem to our case of interest (i.e., 𝑓 = 1; hence, 𝜕𝜈𝑓 = 0), we get

𝜕𝜈

∫︁
Ω(𝜆)

1 dy =

∫︁
Ω(𝜆)

∇ · (ẋ𝜈𝑓) dy =

∫︁
𝑉

∇ · (ẋ𝜈𝑓) 𝐽dx

where we used the change of variables in the last term on the right-hand side. Now, equating both derivatives we
directly get an expression for D𝜈𝐽

D𝜈𝐽 = 𝐽∇ · ẋ𝜈

Repeating the same process with another derivative w.r.t. 𝜇, we directly get

D𝜇𝜈𝐽 = 𝐽 [∇ · (𝜕𝜇ẋ
𝜈) + ẋ𝜇 · ∇ (∇ · ẋ𝜈)]

Since we are interested in evaluating the derivatives at y = x, then 𝐽 = 1; hence D𝜈𝐽 = ∇ · ẋ𝜈 and D𝜇𝜈𝐽 =
∇ · (𝜕𝜇ẋ

𝜈) + ẋ𝜇 · ∇ (∇ · ẋ𝜈).

1.3 Mapping velocity

Since 𝑄 is a function only of 𝜆, average free energy derivatives do not depend on how x get mapped into the y coor-
dinates; or, in other words, they do not depend on the mapping velocity ẋ𝜈 . However, the fluctuations (or uncertainty)
in these averages do depend on the mapping. Therefore, for the purposes of molecular simulation measurements we
need to choose ẋ𝜈 that reduces the stochastic uncertainty as much as possible.

To develop such a mapping we need to recognize that free energy derivatives are given as ensemble averages over
D𝜈𝒰 ′ (and its derivative, D𝜇𝜈𝒰 ′). Therefore, a perfect mapping is such that D𝜈𝒰 ′ is independent on coordinates x;
hence

𝜕𝜈𝒜 = ⟨D𝜈𝒰 ′⟩ = D𝜈𝒰 ′

Using the above energy and Jacobian derivatives, we get

𝜕𝜈𝒜 = 𝜕𝜈𝒰 −∇ · ẋ𝜈 −ℱ · ẋ𝜈

Solving this equation yields the unique mapping that yields no fluctuations; however, there are two problems. First of
all, 𝜕𝜈𝒜 is the very quantity that we need to measure. Second, since ẋ𝜈 is a multidimensional vector (3𝑁 for the case
of atomic systems) we have under-determined system as we only have one equation to solve.

The first problem is solved using the fact that ẋ𝜈 does not affect average estimates; hence, it can be derived from
another (known) system that approximates 𝒜, which we will call reference.

𝜕𝜈𝒜ref = 𝜕𝜈𝒰 ref −∇ · ẋ𝜈 −ℱ ref · ẋ𝜈

where 𝜕𝜈𝒜ref is a reference-dependent constant (function only of 𝜆), named 𝑐. Because the reference only approx-
imates 𝒜, the ẋ𝜈 obtained from this formula will not yield a zero-fluctuation average; however, if the reference is a
good approximation, we can expect substantially smaller fluctuations in the average.

To address the second problem, we will assert that each degree of freedom (dof) is mapped with the same amount
(scaling); so

𝜕𝜈⊓ref − 𝜕𝑥𝑥̇
𝜈 − {ref 𝑥̇𝜈 = 𝜕𝜈⊣ref ≡ 𝑐(𝜆)

1.3. Mapping velocity 5

pyhma Documentation, Release 0.0.1

where small symbols represent an intensive quantities (e.g., 𝑢 ≡ 𝑈/dof), and 𝑥 is one of the coordinates of x. For a
given 𝜆, this is a standard first-order differential equation, with the unknown being the velocity of mapping 𝑥̇(𝑥, 𝜆).
For simplicity, we will drop the 𝜆 dependency from all terms, hence

𝜕𝑥𝑥̇
𝜈 (𝑥) + { (𝑥)

ref
𝑥̇𝜈 (𝑥) = 𝜕𝜈⊓ (𝑥)

ref − 𝑐 ≡ 𝑔 (𝑥)

where 𝑔(𝑥) is a known function once a reference system is chosen. The solution of this equation is given by

𝑥̇𝜈 = 𝑒−𝐼(𝑥)

(︂∫︁
𝑔 𝑒𝐼(𝑥)d𝑥 + constant

)︂
where 𝐼(𝑥) ≡

∫︀
𝑓(𝑥)refd𝑥. The integration constant can be evaluated by requiring the mapping to have some value at

some coordinate 𝑥.

6 Chapter 1. Theory

CHAPTER 2

Application to Crystals

For crystalline systems, a reference for mapping can be chosen to be non-interacting harmonic system, or Einstein
crystal (EC). Using the offset from the lattice sites (i.e., 𝑟− 𝑟lattice) to represent our coordinate 𝑥, the potential energy
for each dof is then given by

𝑢ref = 𝛼(𝜆)𝑥2

hence, the free energy is given by

𝑎ref =
1

2
ln (𝛼(𝜆)/𝜋)

Accordingly, 𝑓 ref = −2𝛼(𝜆)𝑥 , 𝐼 = −𝛼(𝜆)𝑥2, and 𝑔 = (𝜕𝜈𝛼)
[︀
𝑥2 − 1/2𝛼

]︀
. Requiring the mapping velocity to

vanish when atoms are at their lattice sites; i.e., 𝑥̇𝜈 = 0 at 𝑥 = 0, the solution of the velocity mapping equation is
reduced to

𝑥̇𝜈 =

𝑒−𝐼(𝑥)

∫︁ 𝑥

0

𝑔 𝑒𝐼(𝑥)d𝑥

=

𝑒𝛼(𝜆)𝑥
2

∫︁ 𝑥

0

𝑔 𝑒−𝛼(𝜆)𝑥2

d𝑥

=

−𝜕𝜈𝛼

2𝛼
𝑥

We will now consider two cases: temperature and volume free energy derivative; or energy and pressure, consequently.
Note that all energy quantities (and its derivatives, like forces) are multiplied by 𝛽; hence, the force constant 𝛼 → 𝛽𝛼,
where 𝛼 is now temperature independent.

• case 1: 𝜈 = 𝛽

𝜕𝛽(𝛽𝛼) = 𝛼

hence,

𝑥̇𝛽 = − 1

2𝛽
𝑥

7

pyhma Documentation, Release 0.0.1

• case 2: 𝜈 = 𝑉

Here, we need to use the 𝐿-scaled coordinates (i.e., 𝑥 → 𝑥/𝐿); hence 𝛼 → 𝐿2𝛽𝛼 = 𝑉 2/3𝛽𝛼(𝑉)

𝑥̇𝑉 =

−1

2

𝜕𝜈(𝑉 2/3𝛼(𝑉))

𝑉 2/3𝛼(𝑉)
𝑥

=(︂
−1

2

𝜕𝑉 𝛼(𝑉)

𝛼(𝑉)
− 1

3𝑉

)︂
𝑥

=(︂
𝛽 𝑝harm − 1

3𝑉

)︂
𝑥

Where 𝑝harm is the harmonic pressure per each dof. For more details you can refer to our PRE and JCTC work.

2.1 Anharmonic energy

Conventional (no mapping):

𝑈ah = ⟨𝑈⟩ − 𝑑(𝑁 − 1)

2
𝑘B𝑇 − 𝑈 lat

Mapped averaging (Einstein crystal reference):

𝑈ah =

⟨
𝑈 +

1

2
F · ∆r

⟩
− 𝑈 lat

2.2 Anharmonic pressure

Conventional (uniform scaling):

𝑃 ah =
⟨︀
𝑃 vir

⟩︀
+ 𝜌𝑘B𝑇 − 𝑃 qh − 𝑃 lat

Mapped averaging (Einstein crystal reference):

𝑃 ah =
⟨︀
𝑃 vir + 𝑐 F · ∆r

⟩︀
− 𝑃 lat

where 𝑐 is a constant and given by, 𝑐 = 𝛽𝑃 qh−𝜌
𝑑(𝑁−1)

The formulas for both anharmonic energy and pressure are summarized in Figure 2.1.

2.3 Equivalence of Conv and HMA

The equivalence between both conventional and mapped-averaging expressions can be easily seen by recognizing this
equality for crystalline systems:

⟨F · ∆r⟩ = −𝑑 (𝑁 − 1) 𝑘B𝑇

8 Chapter 2. Application to Crystals

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.043303
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00018

pyhma Documentation, Release 0.0.1

Fig. 2.1: Conventional and HMA formulas for anharmonic energy and pressure.

Plugging this expression into the HMA expressions yields the conventional average expression.

Proof:

The general expression for the configurational partition function is given by:

𝑄 =

∫︁
𝑒−𝛽𝑈dx

For crystalline systems, we use ∆x ≡ x− xlat

𝑄 =

∫︁
WS

𝑒−𝛽𝑈 d𝑑𝑁∆𝑥

Where the integration is carried out withing the Wigner-Seitz (WS) volume of each atom. This can be written as

𝑄 =

∫︁
WS

d𝑑𝑁−1∆𝑥

∫︁
WS

𝑒−𝛽𝑈 d∆𝑥1

Using integration by parts:

𝑄 =

∫︁
WS

[︀
∆𝑥1𝑒

−𝛽𝑈
]︀Δ𝑥max

1

Δ𝑥min
1

d𝑑𝑁−1∆𝑥 − 𝛽

∫︁
WS

𝐹1∆𝑥1 𝑒−𝛽𝑈d𝑑𝑁∆𝑥

The surface (first) term on the right-hand side vanishes due to large values of 𝑈 at the surface of the WS volume.
Dividing by Q, we finally get:

⟨𝐹1∆𝑥1⟩ = −𝑘B𝑇

For 𝑑(𝑁 − 1) degrees-of-freedom, we get: ⟨F · ∆r⟩ = −𝑑 (𝑁 − 1) 𝑘B𝑇

2.3. Equivalence of Conv and HMA 9

pyhma Documentation, Release 0.0.1

10 Chapter 2. Application to Crystals

CHAPTER 3

pyHMA

pyHMA is a VASP post-processor (written in Python 3) for precise measurment of crystalline anharmonic properties
using Harmonically Mapped Averaging (HMA) method. It is based on post-processing vasprun.xml output file(s)
obtained from NVT Born-Oppenheimer ab initio molecular dynamics (AIMD) simulation. See Table 2.1 as an example
for HMA expressions for anharmonic energy and pressure, along with direct/conventional (Conv) counterpart.

pyHMA is free software: you can modify and/or redistribute it under the terms of the Mozilla Public License (MPL
2.0).

Please cite this paper when using pyHMA package in your research:

Sabry G. Moustafa, Apoorva Purohit, Andrew J. Schultz, and David A. Kofke, pyHMA: A VASP Post-
processor for Precise Measurement of Crystalline Anharmonic Properties using Harmonically Mapped
Averaging, Comput. Phys. Commun., 2020.

Note:

• The term anharmonicity is commonly used in literature to qualitatively describe a system with no equilibrium
configuration at 0 K (i.e., imaginary frequencies); in other words, it refers to a “non-harmonic” potential energy
surface.

• Here, however, we define anharmonic contribution of some property 𝑋 as the residual in excess of the harmonic
approximation; i.e., 𝑋ah ≡ 𝑋 − (𝑋lat + 𝑋qh). Therefore, this specific definition is meaningless if the system
does not have equilibrium lattice configuration at 𝑇 = 0 K. For this reason, pyHMA checks forces on the first
configuration to make sure the system has an equilibrium configuration (i.e., zero forces).

3.1 Installation

Attention: pyHMA is written in Python 3 syntax; hence, only compatible pip installer can be used.

From PyPI (Recommended)

11

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.043303
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/

pyhma Documentation, Release 0.0.1

pyHMA can be directlly installed from Python Package Index (PyPI) using pip command:

$ pip install pyhma

From Github (development version)

First, clone the source code from the Github repository:

$ git clone https://github.com/etomica/mapped-averaging.git

and then, go to the mapped-averaging/pyhma directory to install pyHMA locally using pip command:

$ pip install --user -e .

3.2 Usage

Fig. 3.1: Overall structure of pyHMA package.

As shown in the diagram, pyHMA post-processes VASP AIMD data in two stages: first, reading vasprun.xml
output file(s) (pyhma.vasp_reader module), and then process the data to compute anharmonic properties, using
conventional (Conv) and harmonically-mapped averaging (HMA) approaches (pyhma.processormodule). Below
is a detailed description of each stage along with an example of fcc aluminum at high pressure (𝑃lat = 114.4 GPa;
corresponds to 𝑉 = 10𝐴3/atom) and temperature (1000 K).

Attention:

1. It is worth emphasizing here that 𝑈lat , 𝑃lat , and 𝑃qh inputs needed for the anharmonic calculations (see
Table 2.1) must be obtained using the same setting with with AIMD (e.g., system size, DFT parameters, etc.)
in order to ensure having the same potential-energy surface.

2. However, lattice and quasiharmonic contributions needed for computing the full property (lat+qh+ah) should
be obtained from separate calculations as those components can converge at a different rates from the anhar-
monic one. The full property 𝑋 can be then decomposed to 𝑋 = 𝑋*

lat + 𝑋*
qh + 𝑋ah, where the asterisk

refers to using different DFT setting.

3. To summarize points 1 and 2 above: 𝑋lat and 𝑋qh used as inputs to pyHMA should not be used as the lat and
qh contributions of the full property. On the other hand, 𝑋*

lat and 𝑋*
qh used for computing the full property

should not be used as the lat and qh input parameters for pyHMA. Mixing between these two uses will result
in inconsistent and inaccurate results.

12 Chapter 3. pyHMA

https://pypi.python.org/pypi/pyhma
https://github.com/etomica/mapped-averaging

pyhma Documentation, Release 0.0.1

3.2.1 1. Interactive usage

Reading

In this stage, pyhma.vasp_reader.read() function parses vasprun.xml AIMD simulation file and returns
a data dictionary with simulation information to be processed in the second stage. In the below example, the AIMD
simulation consists of two consecutive runs of the same simulation, where the initial configuration of the first run is
the fcc lattice positions.

>>> import pyhma
>>> data = pyhma.read(['vasprun-1.xml', 'vasprun-2.xml'])

The data dictionary contains the following keys:

• box_row_vecs (Å): box edge row vectors

• num_atoms: total number of atoms

• volume_atom (Å^3/atom): average volume per atom

• basis: list of atomic fractional positions of first configuration

• position: instantaneous atomic fractional positions

• force (eV/Å): instantaneous atomic forces

• energy (eV/atom): instantaneous potential energy (E0)

• pressure (GPa): instantaneous pressure

• pressure_ig (GPa): ideal gas pressure

• timestep (fs): MD timestep

• temperature (K): NVT set temperature

This function also takes optional arguments: raw_files, force_tol, and verbose. By setting raw_files=True (de-
fault is False), the following .dat files will be generated, which contain raw data from vasprun.xml file(s).
These files are only for diagnostics purposes, and not used in the process stage.

• poscar_eq.dat: initial (must be the equilibrium) POSCAR file (in fractional coordinates)

• energy.dat: instantaneous potential energy, E0 (in eV/atom)

• pressure.dat: instantaneous pressure (in GPa)

• posfor.dat: instantaneous atomic positions and forces (in Å and eV/Å)

The second argument (force_tol) is the maximum force allowed on any atom in the initial configuration (default
is 0.001 eV/Å). This is used to make sure the initial configuration is the minimized (or, equilibrium). If this condition
is not matched, the function will be interrupted and prints a warning with a list of atoms having large initial forces.

To print the lattice vectors, and the initial atomic positions and forces, you can add verbose=True (default is
False) to the arguments.

Below is the output resulted from using all optional arguments:

>>> data = pyhma.read(['vasprun-1.xml', 'vasprun-2.xml'], raw_files=True, force_tol=0.
→˓002, verbose=True)

Reading vasprun-1.xml vasprun-2.xml
==
first configuration data from vasprun-1.xml
--

(continues on next page)

3.2. Usage 13

pyhma Documentation, Release 0.0.1

(continued from previous page)

32 atoms (total)
Box edge (row) vectors
6.83990379 0.00000000 0.00000000
0.00000000 6.83990379 0.00000000
0.00000000 0.00000000 6.83990379

atom xyz (direct) coordinates (A) xyz forces (eV/A)
1 0.00000000 0.00000000 0.00000000 0.00000098 0.00000047 -0.00000207
2 0.50000000 0.00000000 0.00000000 -0.00000114 -0.00000068 -0.00000010
3 0.00000000 0.50000000 0.00000000 0.00000092 -0.00000001 0.00000009
4 0.50000000 0.50000000 0.00000000 -0.00000075 0.00000133 0.00000002
5 0.00000000 0.00000000 0.50000000 0.00000156 -0.00000124 0.00000148
6 0.50000000 0.00000000 0.50000000 -0.00000228 -0.00000113 0.00000060
7 0.00000000 0.50000000 0.50000000 0.00000058 0.00000088 -0.00000025
8 0.50000000 0.50000000 0.50000000 -0.00000022 0.00000147 0.00000020
9 0.25000000 0.25000000 0.00000000 0.00000626 0.00000445 0.00000093
10 0.75000000 0.25000000 0.00000000 -0.00000698 0.00000368 -0.00000093
11 0.25000000 0.75000000 0.00000000 0.00000876 -0.00000401 -0.00000012
12 0.75000000 0.75000000 0.00000000 -0.00000828 -0.00000414 -0.00000230
13 0.25000000 0.25000000 0.50000000 0.00000749 0.00000298 -0.00000160
14 0.75000000 0.25000000 0.50000000 -0.00000890 0.00000465 0.00000053
15 0.25000000 0.75000000 0.50000000 0.00000879 -0.00000420 0.00000048
16 0.75000000 0.75000000 0.50000000 -0.00000810 -0.00000479 0.00000260
17 0.00000000 0.25000000 0.25000000 0.00000300 0.00000494 0.00000561
18 0.50000000 0.25000000 0.25000000 -0.00000351 0.00000432 0.00000600
19 0.00000000 0.75000000 0.25000000 0.00000149 -0.00000550 0.00000703
20 0.50000000 0.75000000 0.25000000 -0.00000171 -0.00000398 0.00000669
21 0.00000000 0.25000000 0.75000000 0.00000072 0.00000397 -0.00000567
22 0.50000000 0.25000000 0.75000000 -0.00000041 0.00000300 -0.00000674
23 0.00000000 0.75000000 0.75000000 -0.00000135 -0.00000323 -0.00000732
24 0.50000000 0.75000000 0.75000000 0.00000067 -0.00000412 -0.00000650
25 0.25000000 0.00000000 0.25000000 0.00000892 0.00000095 0.00000758
26 0.75000000 0.00000000 0.25000000 -0.00000866 -0.00000109 0.00000571
27 0.25000000 0.50000000 0.25000000 0.00000780 -0.00000037 0.00000582
28 0.75000000 0.50000000 0.25000000 -0.00000778 0.00000087 0.00000677
29 0.25000000 0.00000000 0.75000000 0.00000777 -0.00000093 -0.00000665
30 0.75000000 0.00000000 0.75000000 -0.00000764 -0.00000253 -0.00000547
31 0.25000000 0.50000000 0.75000000 0.00000795 0.00000070 -0.00000629
32 0.75000000 0.50000000 0.75000000 -0.00000705 0.00000248 -0.00000653

Reading vasprun-1.xml (1 out of 2)
Reading vasprun-2.xml (2 out of 2)

>>>

Note:

• The read() function can handle incomplete vasprun.xml file(s) generated from interrupted AIMD runs (by the
user, or due to some time constraint). The was possible with using the recovery option of LXML parser.

• If your MD simulation starts from a thermalized/equilibrated (not lattice) configuration, you can just run a
single-point energy calculation on the lattice configuration (using the same DFT parameters used with AIMD)
and use the output as your vasprun-1.xml input to pyHMA, followed by your thermalized vasprun.xml
files.

Processing

14 Chapter 3. pyHMA

pyhma Documentation, Release 0.0.1

In this stage, the data from previous step are processed to compute anharmonic properties. This is done, first, by
creating a processor instance (proc) of the pyhma.processor.Processor() class, using the data dictionary
and the quasiharmonic pressure (GPa) at the given 𝑉 and 𝑇 . The class takes one optional argument, meV, to specify
whether to report the energy results in meV (meV=True) or eV (meV=False, default). At this point, the proc
object carries the same information exist in the data dictionary.

>>> proc = pyhma.Processor(data, pressure_qh=4.94154, meV=True)

Then, the instantaneous properties are obtained by calling the pyhma.processor.Processor.process()
method, which takes two optional arguments: steps_tot and verbose. The steps_tot is the total number
of MD steps to be used for ensemble averages (default is all steps found in vasprun.xml) and the verbose
(default is False) directs pyHMA to print information while running. The output is saved to a 2D array (proc.
out_data attribute) of length equal to all MD steps (or, steps_tot if set) and contains four columns: Conv and
HMA anharmonic energies and pressures.

>>> proc.process(steps_tot=10000, verbose=True)

Simulation data
===============
Set temperature (K): 1000.00000
Volume (A^3/atom): 10.00000
MD timestep (fs): 2.00000
Lattice energy (eV/atom): -2.21324
Harmonic energy (eV/atom): 0.12522
Lattice pressure (GPa): 114.44281
Harmonic pressure (GPa): 4.94525

Found 11036 total MD steps
Using 10000 user-set MD steps

Computing instantaneous properties ...

The method also generates energy_ah.out and pressure_ah.out output files for the instantaneous anhar-
monic energy (eV/atom; or meV/atom if meV=True) and pressure (GPa), respectively. Each file contains three
columns; time (in fs), Conv, and HMA estimates of the property. This data is plotted below.

Fig. 3.2: Time vartaion of the anharmonic energy (energy_ah.out) and pressure (pressure_ah.out).

Lastly, ensemble statistics (average, uncertainty, and block correlation) are obtained using block averaging technique.
This is done by invoking the pyhma.processor.Processor.get_stats()method, which takes two required
arguments (steps_eq and blocksize) and one optional argument (verbose). The steps_eq is the number of
MD steps used for equilibaration and blocksize is the number of MD steps in each block used for block averaging;

3.2. Usage 15

pyhma Documentation, Release 0.0.1

so, steps_tot/blocksize is the number of blocks to be used. If True, the verbose flag will direct pyHMA to print
samples information.

The method returns the statistics output in a form of a dictionary (stats) of four entries: Conv and HMA anharmonic
energies (e_ah_conv and e_ah_hma) and pressures (p_ah_conv and p_ah_hma), each with three elements of
average (avg), uncertainty (err), and adjacent blocks correlation (cor). The output can be presented in a more user-
friendly format by using pyhma.processor.Processor.print_stats() method, which yields the output
shown below.

>>> stats = proc.get_stats(steps_eq=1000, blocksize=90, verbose=True)

Block averaging statistics
==========================
9000 production steps (after 1000 equilibration steps)
100 blocks (blocksize = 90 steps)

Computing statistics ...

>>> proc.print_stats(stats)

e_ah_conv (meV/atom): 2.10911 +/- 1.1e+00 cor: 0.35
e_ah_hma (meV/atom): 0.42650 +/- 4.3e-02 cor: 0.11
p_ah_conv (GPa): 0.01371 +/- 3.1e-02 cor: 0.36
p_ah_hma (GPa): -0.03419 +/- 4.1e-03 cor: 0.26

Note:

• The correlation should be as small as possible (less than / 0.2) to ensure accurate estimate of uncertainty.
Although increasing the blocksize reduces the correlations, the number of blocks should be large enough
(' 50) to yield meaningful statistics.

• The Conv and HMA should be statistically consistent, as long as the results are converged with respect to
timestep. However, the above example has inconsistent results due to using relatively large timestep (∆𝑡 = 2
fs), though the HMA estimate is still accurate as it converges faster than Conv (see our JCP2018 work for
details).

3.2.2 2. pyhma script

Anharmonic properties can be computed in one step from the command-line using pyhma script, which uses the same
arguments as those used above, except for the use of r and v short forms of raw_files and verbose options,
respectively. The usage of pyhma is given here, where the square brackets represent optional keys:

$ # Usage:
$ # pyhma --pressure_qh=qh pressure (GPa) --steps_eq=equilib. steps --blocksize=block
→˓size
$ # [--steps_tot=used steps] [--force_tol=force tolerance] [--raw_files|-r] [--
→˓meV]
$ # [--verbose|-v] vasprun-1.xml vasprun-2.xml ...

Using the pyhma script (with default option) to compute anharmonic energy and pressure of the above fcc aluminum
example yields:

16 Chapter 3. pyHMA

https://doi.org/10.1063/1.5043614

pyhma Documentation, Release 0.0.1

$ pyhma --pressure_qh=4.94525 --steps_eq=1000 --steps_tot=10000 --blocksize=90 -r --
→˓meV

vasprun-1.xml vasprun-2.xml

e_ah_conv (meV/atom): 2.10911 +/- 1.1e+00 cor: 0.35
e_ah_hma (meV/atom): 0.42650 +/- 4.3e-02 cor: 0.11
p_ah_conv (GPa): 0.01371 +/- 3.1e-02 cor: 0.36
p_ah_hma (GPa): -0.03419 +/- 4.1e-03 cor: 0.26

3.2.3 3. Parameters table

The Table below gives a summary of both required and optional arguments used by pyHMA.

3.3 Modules

3.3.1 pyhma.vasp_reader

3.3.2 pyhma.processor

3.3. Modules 17

pyhma Documentation, Release 0.0.1

18 Chapter 3. pyHMA

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

	Theory
	Absolute free energy
	Free energy derivatives
	Mapping velocity

	Application to Crystals
	Anharmonic energy
	Anharmonic pressure
	Equivalence of Conv and HMA

	pyHMA
	Installation
	Usage
	Modules

	Indices and tables

